Hirzebruch–Milnor classes of complete intersections

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hirzebruch-milnor Classes of Complete Intersections

We prove a new formula for the Hirzebruch-Milnor classes of global complete intersections with arbitrary singularities describing the difference between the Hirzebruch classes and the virtual ones. This generalizes a formula for the Chern-Milnor classes in the hypersurface case that was conjectured by S. Yokura and was proved by A. Parusinski and P. Pragacz. It also generalizes a formula of J. ...

متن کامل

Chern Classes of Splayed Intersections

We generalize the Chern class relation for the transversal intersection of two nonsingular varieties to a relation for possibly singular varieties, under a splayedness assumption. The relation is shown to hold for both the Chern– Schwartz–MacPherson class and the Chern–Fulton class. The main tool is a formula for Segre classes of splayed subschemes. We also discuss the Chern class relation unde...

متن کامل

Criteria for complete intersections

We establish two criteria for certain local algebras to be complete intersections. These criteria play an important role in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular. Introduction In this paper we discuss two results in commutative algebra that are used in A. Wiles’s proof that all semi-stable elliptic curves over Q are modular [11]. We first fix some notation tha...

متن کامل

Elliptic Genera of Complete Intersections

We propose a new definition of the elliptic genera for complete intersections, not necessarily nonsingular, in projective spaces. We also prove they coincide with the expressions obtained from Landau-Ginzburg model by an elementary argument.

متن کامل

Hodge Numbers of Complete Intersections

Suppose X is a compact Kähler manifold of dimension n and E is a holomorphic vector bundle. For every p ≤ dim C X we have a sheaf Ω p (E) whose sections are holomorphic (p, 0)-forms with coefficients in E. We set and we define the holomorphic Euler characteristics χ p (X, E) := q≥0 (−1) q h p,q (X, E). It is convenient to introduce the generating function of these numbers χ y (X, E) := p≥0 y p ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2013

ISSN: 0001-8708

DOI: 10.1016/j.aim.2013.04.001